Archivo para la ‘Blindaxe Sport’ Categoría

Después de una larga revisión bibliográfica acerca de las lesiones asociadas a las roturas de tibia y peroné en el fútbol, creo que el futbolista no es consciente de la necesidad de asegurarse una buena protección que pueda evitar lesiones de larga duración que muchas veces llevan asociadas complicaciones de larga dirección y que se podrían evitar.

Desde mi experiencia considero que el futbolista debe ser consciente que una buena protección, hoy en día, va asociada al uso de materiales composites como la fibra de carbono que aseguran una ligereza  máxima y que debido a su dureza tiene una resistencia mucho mayor que el acero.

En el estudio, llevado a cabo en Estados Unidos, se realizó una revisión retrospectiva de 31 futbolistas que sufrieron una fractura de la pierna, tibia  y peroné , o ambos por separado, por un golpe directo, mientras jugaban al futbol.

En el estudio, se concluyó que quince fracturas implicaban fractura tanto de la tibia como del peroné, mientras 11 sólo la tibia, y 5 sólo el peroné.

La información se recogió mediante un cuestionario estandarizado,  en el cual el tiempo medio de seguimiento desde el momento de la lesión fue de 30 meses.

Las lesiones por fracturas de piernas ocurrían  en futbolistas jóvenes y competitivos durante situaciones de juego.

– Los mecanismos se clasifican a grandes rasgos en varias categorías:

– Impacto durante un tackle deslizante (13, 42%),

– Choque con el portero (8, 26%)

– Dos jugadores opuestos chocan con un balón suelto (7, 23%)

– Impacto del oponente con el pie en tu tibia (3, 10%)

La mayoría de las fracturas (26, 90%) se produjeron con los jugadores portando espinilleras, que no soportaron el impacto. El punto de impacto en la fractura fue  la espinillera en 16 casos (62%), por lo que se ve claramente que el material del que se fabrique la espinillera es fundamental para evitar la rotura.

El regreso al fútbol de competición tras fractura tiene un promedio de 40 semanas cuando uno rompe tibia y  peroné, 35 semanas para las fracturas aisladas de tibia, ya las 18 semanas para las fracturas de peroné aislados.

Estos hallazgos sugieren que la reducción de las fracturas en las piernas en  jugadores de fútbol son lesiones graves, y a menudo, requiere un tiempo de recuperación muy prolongado. Además, este estudio cuestiona la capacidad de espinilleras para proteger tus piernas  contra las fracturas.

Los estudios demuestran que debemos tener en cuenta que la protección de nuestras piernas es algo fundamental a  la hora de reducir las lesiones graves en el fútbol.

Fuente del Estudio original:

Tibia and fibula fractures in soccer players.

Boden BP, Lohnes JH, Nunley JA, Garrett WE Jr.

Source

Uniformed Services University of Health Sciences, Silver Spring, MD 20902, USA.

By Rachel Swaby –  freelance writer living in San Francisco Twitter: http://twitter.com/rachelswaby Original article:  http://gizmodo.com/5843276/why-is-carbon-fiber-so-expensive

When carbon fiber was first trotted out in solid rocket motor cases and tanks in the 1960s, it was poised to not only take on fiberglass, but also a whole host of other materials.

What happened?

50 years later it’s still an exotic material. Sure, Batman’s got it in his suit, expensive cars feature smatterings of it in their dashboards and performance parts, but at $10 a pound on the low end, it’s still too pricy for wide-scale deployment. We’ve been using this stuff for decades. Where’s our materials science Moore’s Law to make this stuff cheap? Why is this stuff still so expensive?

Turns out that even half a century later, this stuff is still a major pain in the ass to make.

Before carbon fiber becomes carbon fiber, it starts as a base material—usually an organic polymer with carbon atoms binding together long strings of molecules called a polyacrylonitrile. It’s a big word for a material similar to the acrylics in sweaters and carpets. But unlike floor and clothing acrylics, the kind that turns into a material stronger and lighter than steel has a heftier price tag. A three-ish-dollar per pound starting price may not sound exorbitant, but in its manufacturing, the number spikes.

See, to get the carbon part of carbon fiber, half of the starting material’s acrylic needs to be kicked away. “The final product will cost double what you started with because half burns off,” explains Bob Norris of Oak Ridge National Laboratory’s polymer matrix composites group. “Before you even account for energy and equipment, the precursor in the final product is something around $5 a pound.”

That price—$5 a pound—is also the magic number for getting carbon fiber into mainstream automotive applications. Seven bones will do, but five will make the biggest splash. So as it stands, the base material alone has already blown the budget.

Blindaxe sport Shinguards

There’s more. Forcing the acrylic to shed its non-carbon atoms takes monstrous machines and a lot of heat. The first of two major processing steps is oxidization stabilization. Here fibers are continuously fed through 50-100 foot-long ovens pumping out heat in the several hundred degrees Celsius range. The process takes hours, so it’s a massive energy eater.

Then the material goes through a what’s called carbonization. Although the furnaces here are shorter and don’t run for as long, they operate at much higher temperatures—we’re taking around 1000 degrees Celsius for the initial step before and then another round of heating with even higher temperatures. That’s a power bill you don’t even want to think about.

And it doesn’t end there. Manufacturers also have to deal with the acrylic that doesn’t hold on during the heating process. Off gasses need to be treated so as not to poison the environment. It ain’t cheap being green. “It’s a lot of energy, a lot of real estate, and a lot of large equipment,” says Norris. And that’s just in the manufacturing of the individual fibers themselves.

Let’s take a second to talk about where we are in the manufacturing process, and where we’re trying to get. That awesome-looking, rock-hard, ultra-light, shiny panel with its visible weave is what you think of when you think of carbon fiber, right? Well, we’ve just made the strands; we’ve still got to arrange them into a lattice that takes advantage of the material’s unidirectional strength and bond them together.

Nailing the woven product means making sure that all the strands are pulling their weight. “You have to be concerned that the fibers are all parallel and are all stretched evenly,” explains Rob Klawonn, president of the carbon fiber manufacturer, Toho Tenax America. A wavy strand in a lattice will put extra stress on a straight fiber, and that straight one will end up breaking first. To compensate for the possibility of an imperfect weave, manufacturers might thread in ten percent more of the already expensive fibers than is necessary.

Alone, the strands aren’t the strong stuff that manufacturers need. They’re a reinforcer like steel is in concrete. Right now carbon fibers work with a thermoset resin. Together they make a composite that can be manipulated to take a certain shape. The trouble is that once the resin has been shaped and cured in an autoclave, that shape cannot be modified without screwing with the product’s structural integrity. A small mistake means a lot of waste—and time. Thermosetting takes over an hour, which is a long time considering how fast the automotive industry stamps out body panels.

So carbon fiber doesn’t just require one genius fix to get it into a lower price class, it requires an entire systems overhaul. As with anything offering a big financial reward, the industry is on it.

Those sweater-type acrylics, for instance, might be used in place of the ones manufacturers use now. “The equipment is less specialized, so that might cut the precursor cost by 20-30 percent,” says Norris. They’re also checking out renewable carbon fiber starters like lignin, which comes from wood, instead of the current petroleum-based stuff.

Alternate conversion processes—namely swapping thermal for plasma heating—could lower costs as well. “It cuts the time down because you don’t have to heat the entire furnace; you generate the plasma to surround the filaments,” explains Norris.

Carbon fiber Face shield by blindaxe sport

Scientists haven’t quite nailed the chemical process to get carbon fiber to work with thermoplastic resins quite yet, either. But once they do, Klawonn of Toho Tenax America predicts 60-70% cut in cost in the conversion process. The big change is that thermoplastics are quick to set and can be melted and remelted, which limits waste when there’s a mistake.

Change is on the horizon. Norris points out that carbon fiber has been installed in place of aluminum on newer commercial airliners like the Airbus A380. “They’re moving more mainstream, but up until now it’s always been in industries that can afford to pay for the performance.” Let’s just hope the cost caves before the industries that need it do.

Original article link: http://gizmodo.com/5843276/why-is-carbon-fiber-so-expensive

Año 2012 que se fue, fin de un sueño.

Año 2013 que llegó, comienzo de un nuevo ensueño!!!